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Postsynaptic density (PSD) proteins in excitatory synapses are relatively immobile compo-
nents, while there is a structured organization of mobile scaffolding proteins lying beneath
the PSDs. For example, shank proteins are located further away from the membrane in the
cytosolic faces of the PSDs, facing the actin cytoskeleton.The rationale of this organization
may be related to important roles of these proteins as “exchange hubs” for the signaling
proteins for their migration from the subcortical cytosol to the membrane. Notably, PSD95
have also been demonstrated in prejunctional nerve terminals of nitrergic neuronal vari-
cosities traversing the gastrointestinal smooth muscles. It has been recently reported that
motor proteins like myosinVa play important role in transcytosis of nNOS. In this review, the
hypothesis is forwarded that nNOS delivered to subcortical cytoskeleton requires interac-
tions with scaffolding proteins prior to docking at the membrane.This may involve significant
role of “shank,” named for SRC-homology (SH3) and multiple ankyrin repeat domains,
in nitric oxide synthesis. Dynein light chain LC8–nNOS from acto-myosin Va is possibly
exchanged with shank, which thereafter facilitates transposition of nNOS for binding with
palmitoyl-PSD95 at the nerve terminal membrane. Shank knockout mice, which present
with features of autism spectrum disorders, may help delineate the role of shank in enteric
nitrergic neuromuscular transmission. Deletion of shank3 in humans is a monogenic cause
of autism called Phelan–McDermid syndrome. One fourth of these patients present with
cyclical vomiting, which may be explained by junctionopathy resulting from shank deficit
in enteric nitrergic nerve terminals.

Keywords: nitrergic, neurotransmission, shank, autism, functional bowel disorders, LC8, PSD95, inhibitory neuro-
transmission

MERE LOCALIZATION OF nNOS IN PREJUNCTIONAL NERVE
TERMINALS IS INADEQUATE FOR NITRIC OXIDE SYNTHESIS
Defective neuromuscular transmission is a major pathophysio-
logical basis for gastrointestinal motility disorders (1–3). Large
repertoire of these disorders results from defective inhibitory neu-
rotransmission that involves release of nitric oxide from prejunc-
tional nerve terminals of motor neurons that traverse the smooth
muscle layers of the gut (4–7). Failure of nitric oxide synthesis,
the major inhibitory neurotransmitter, results in a phenotype that
involves complete failure of gut smooth muscle relaxation (8).
Though human biopsy samples of functional bowel disorders are
difficult to obtain for obvious reasons, animal studies have pro-
vided ambiguous results regarding concentrations of nNOS in
nerve terminals in pathological states (9, 10), which phenotypi-
cally manifest as either failure of relaxation of intestinal smooth
muscles or varying degrees of impairment of gastrointestinal tran-
sit (11, 12). However, recent studies have provided evidence that
mere presence of nitric oxide synthesizing-enzyme neuronal nitric
oxide synthase (nNOS) in the nerve terminals may not be ade-
quate for inhibitory nitrergic neuromuscular transmission in the
gut (11, 12).

Nitric oxide-mediated neurotransmission, the main basis for
oro-aboral movement of intestinal luminal contents, may be dis-
rupted due to several factors, including (i) transcriptional block-
ade of genomic nNOS synthesis (13, 14), (ii) deficit in specific
splice variants like nNOSα, because these splice variants have the

capability to undergo lipidic modification to remain membrane-
associated through N-terminal PDZ-interacting domain (15, 16),
(iii) defect in allosteric proteins and cofactors like tetrahydro-
biopterin (BH4) and LC8 (15, 17–20), (iv) defects in dimerization
(16, 18, 21, 22), and (v) defective transport of nNOS within the
nerve terminals due to cytoskeletal abnormalities, which do not
favor enzymatic synthesis of nitric oxide (11, 12, 23).

Diverse organ systems reveal that nNOS remains membrane-
bound during enzymatic synthesis, suggesting that membrane
localization of nNOS may be critical for enzyme action in a
physiological context (5, 24–33). Evidence has suggested the role
of motor proteins like myosin Va in transposition of nNOS
within the nerve terminals to the membranes to facilitate nitrergic
neurotransmission (11, 12).

POSSIBLE ROLE OF ACTIN CYTOSKELETAL BARRIER IN
NITRIC OXIDE SYNTHESIS DURING AN ACTION POTENTIAL
A thesis is proposed here, based on rational argument that deple-
tion of the cytoskeletal organizer protein shank3 may result in
defective nNOS membrane localization, resulting in defective
nitric oxide synthesis. nNOS is a water soluble protein, but a por-
tion of nNOS within nerve terminals remains membrane-bound
due to its ability to undergo lipidic interaction with palmitoyl-
PSD95 (15, 34). Membrane-bound nNOS may be at an optimal
cellular localization for nitric oxide synthesis, possibly due to prox-
imity to calcium ion channels (12). Myosin Va facilitates cytosolic
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transport of nNOS to the subcortical region of the nerve terminal
that is rich in actin (12). Actin meshwork has been reported to
provide a physical barrier to vesicles involved in neurotransmis-
sion (35–44). Specific dynamics regarding correlation of synaptic
activity and reorganization of cortical actin has been examined
in some neuronal systems (39, 45–48), but has not been tested in
enteric nerve terminals.

The critical role of filamentous actin in determining the extent
of dynamic reorganization in postsynaptic density (PSD) mole-
cular composition is being increasingly recognized (49–52). It is
not known whether actin network may provide a barrier to diffu-
sion of non-vesicular neurotransmitter synthesizing enzymes like
nNOS, but recent evidence suggests that the cytosolic streaming
of water soluble molecules is not a chaotic stochastic event (53),
but rather relies on the cytoskeletal machinery like myosin Va and
actin for specific domain localization (11, 12, 54). Recently, the
role of rare actin mutations in refractory constipation has also
been recognized (55, 56).

POSSIBILITY OF “SHANK” PROTEINS AS ORGANIZATIONAL
UNIT IN ENTERIC INHIBITORY JUNCTIONS: MOLECULAR
EXCHANGES DURING NITRERGIC SYNTHESIS
In excitatory synapses, the PDZ-domain-containing scaffold pro-
teins PSD95, along with the shank family form a bilayer protein
network below the postsynaptic membrane, which is bridged by
guanylate kinase-associated protein (GKAP) (57). Shank pro-
tein has three different isoforms: shanks1, 2, and 3 (58, 59).
Shank-family scaffolds are further linked to actin filaments via
cortical-actin-binding protein (cortactin) (60). Thus, these shank
proteins form sheets that make a synaptic platform (61, 62). Deple-
tion and redistribution have been shown for ProSAP2/shank3 in
PSDs of cultured neurons, an observation which was independent
from protein synthesis or degradation and could be enhanced by
electrophysiological stimulation (63). Whether such laminar orga-
nization occurs in enteric nitrergic nerve terminals is not known.
Importantly, scaffolding proteins like PSD95, which are normal
constituents of postsynaptic compartments, may also be present
in presynaptic region, including enteric nerve terminals (15, 64).

Myosin Va has been shown to interact with nNOS via DLC8
(dynein light chain, 8 kDa MW) (12, 20, 65). LC8 acts as mul-
tiple cargo adapters and provides a hub for protein homo- and
heterodimerization (66, 67). LC8, also called DLC8, has been
reported to bind to presynaptic components like bassoon, which
form cytomatrix of the active zone (66). LC8 has also been reported
to associate and form macromolecular complex with shank (68).

Initial evidence has suggested the plausible existence of an
“active zone” for nNOS in the membrane of these nerve termi-
nals (15). nNOS is tethered to the nerve terminal membrane via
the PDZ-rich protein PSD95 (15). PSD95, apart from its PDZ
domains, also have other protein domains like SH3 and guanylate
kinase (69, 70). nNOS may undergo molecular exchange in the
region of the cortical cytoskeleton in which acto-myosin Va-bound
nNOS initiates association with shank, a cortical actin-bound
scaffolding protein.

Shank protein has different modular domains like multiple
ankyrin repeats, SH3, PDZ, and sterile alpha motif, which all
can function as protein interaction units. These aspects have been

reviewed in details elsewhere (57). Figure 1 is a STRING analy-
ses that shows shank proteins are widely distributed in nature in
both the plant and animal kingdom. Furthermore, curated analy-
ses show that shank3 and shank2 interact with multiple proteins
that are known to be present and functional in both postsynaptic
and presynaptic compartments. In the nitrergic nerve terminals,
nNOS may bind to PSD95 in the membrane from shank via trans-
position through GKAP. PDZ-domain-mediated transfer of these
proteins or molecular exchange via LC8 may occur at the cortical
cytoskeleton of the enteric nerve terminal periphery. The logistics
of this hypothesis is represented in a cartoon (Figure 2). These
molecular exchanges may be viewed by time-lapse NMR experi-
ments or by live imaging of enteric varicosities with evanescent
microscopy or fluorescence correlation spectroscopy.

Predictive in silico analyses shows that shank3 has the poten-
tial to interact with both nNOS (Figure 3) and LC8 (Figure 4).
This makes it likely that LC8 acts as an exchange factor that helps
transcend sub-terminally located nNOS through the actin mesh-
work to membrane-bound PSD95. Dialyzates of membrane and
cytosol have shown that membrane fractions of enteric nerve ter-
minals lack LC8 (20). Proteomic analyses have shown that LC8
can bind to actin (73). It is thus likely that LC8, shank, and GKAP
mediates transfer of nNOS in the subcortical zone of the nerve
terminal, and that the subcortical zone of the nerve terminal is a
critical zone for nitrergic neurotransmission. PSD95–nNOS com-
plex may be formed in the cytosol but it is probably not feasible for
this macromolecular complex to be transported to the membrane.
Rigidly bound nNOS to PSD95 will not favor efficient neuro-
transmission. This mainly results from the state of the membrane
potential in the region of the nerve terminal, which imperatively
has to be closely correlated with the activity state of the nNOS
enzyme. The loose associations between nNOS and LC8, myosin
Va, PSD95, and possibly shank and GKAP add to the complexity
of regulation of how nNOS is transported within the terminal but
probably favor a state of switching between active and inactive
enzyme function. This toggle nature is important for start and
stop of nitrergic neurotransmission with classical Sherringtonian
concepts.

Both shank3 and shank2 has been reported to be present in
nNOS-positive myenteric neuronal cell body (79) (Figure 5).
Shank protein presence has been described in the gut (80, 81),
though it has not been examined specifically in the nitrergic nerve
terminal. Messages for shank-interacting proteins like SHARPIN
have been described from entire gut muscle extracts of wild-type
mice (82). Testing important components of the role of shank in
nitrergic neurotransmission are current goals of the laboratory.

SHANK PROTEINS MAY PLAY SIGNIFICANT FUNCTION IN
ENTERIC NITRERGIC NEURO-SMOOTH MUSCLE
NEUROTRANSMISSION BY FACILITATING TRANSFER OF
CYTOSOLIC nNOS TO MEMBRANE THROUGH THE CORTICAL
CYTOSKELETON
Intriguingly, myosin Va-associated scaffolding proteins like
“shank” have been reported to be depleted in monogenic condi-
tions that result in manifestation as pervasive neurodevelopmental
disorder (PND) (83). For example, 25% of patients with the
rare condition Phelan–McDermid syndrome report refractory and
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FIGURE 2 | Cartoon depicting possible role of shank in shuttling of
cytosolic nNOS to the nitrergic nerve terminal membrane. This depicts
the basis of the hypothesis of possible role of shank in nitrergic
neurotransmission. Different scaffolding proteins are shown with the
modular domains without appropriate scale to the full length of the
proteins. Details of these modular domains are described in Kim and
Sheng (57). nNOS, via interaction with LC8 or PDZ-domain-based
interaction, may be shuttled from acto-myosin Va in the cytosol through

the actin cortical barrier by shank and GKAP. Shank has multiple protein
interaction domains like ankyrin domains, SH3, PDZ, and SAM. Static
protein interactions are planned to be examined to test whether such
exchanges takes place in enteric nerve terminals. By these mechanisms,
shank may play a significant role in nitric oxide synthesis and nitrergic
neuromuscular neurotransmission. nNOS–LC8–myosin Va and
nNOS–palmitoyl-PSD95 interactions have been demonstrated in enteric
nerve terminals (12, 15).

FIGURE 3 | Predictive bioinformatic analyses shows potential interaction
between shank3 and nNOS. Rat proteins (PDB: 3QJN, shank3; 1OM4,
nNOS) were queried for interaction using Patchdock. Refinement of solutions
was performed using Firedock. Protein interaction predictions were
performed based on van der Waals and electrostatic interactions between the

3D structures. Prediction of structural alignment based on lowest energy
levels were visualized for ribbons and ball and stick structures using RASMOL
and depicted here from different angles. Patchdock software uses surface
configurations of folded proteins to predict interactions using computer vision
technology (74–76) and is currently being used in neuroinformatics (77).
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FIGURE 4 | Predictive bioinformatic analyses shows potential
interaction between shank3 and LC8. Rat proteins (PDB: 3QJN,
shank3; 1F96, nNOS-bound LC8) were queried for interaction using
Patchdock. Refinement of solutions was performed using Firedock.
Protein interaction predictions were performed based on van der Waals
and electrostatic interactions between the 3D structures. Prediction of

structural alignment based on lowest energy levels was visualized for
ribbon and ball and stick structures using RASMOL (78) and shown in
upper panels. In the lower panels, note the groove in the shank in which
the LC8 (blue) fits. Such conformation may offer dynamic stability to
shank–LC8–nNOS complex during transport at the periphery of nerve
terminals.

cyclical vomiting (84–87). Chromosome mutations like deletions
are seen in chromosome 22 in this syndrome (del22q13.3) (88,
89). This results in inhibition of synthesis of the protein shank3
(90). Shank proteins [Src-homology domain 3 (SH3) and multi-
ple ankyrin repeat domains], including shank3, are known protein
interaction partners of myosin Va (68, 91–94).

Gastrointestinal motility disorders affecting both the proxi-
mal and distal portions of the gut affect quality of daily life
in both children and adult subjects with autism spectrum dis-
orders (ASD) (95–97). These gastrointestinal motility problems
manifest as dysphagia, achalasia, refractory or cyclical vomiting,
acid reflux, gastroparesis and defect in gastric emptying, intestinal
stasis and pseudo-obstruction, and chronic constipation (86, 98–
106). Dysphagia in these patients, gastroesophageal reflux, chronic

vomiting, or encopresis and chronic constipation are often mis-
construed in the clinical setting as behavioral issues, rather than
an organic problem (107–109).

In diverse systems, myosin Va–LC8–nNOS have been shown
to form complexes with shank–GKAP–PSD95 (68, 73, 110). This
important issue merits examination in enteric motor terminals.
Shank has also been reported to associate with cell adhesion mol-
ecules like neuroligins in the postsynaptic compartment. Changes
through neuroligin–neurexin signaling have been proposed in the
presynaptic compartment during neuronal activity (111, 112).
Additionally, neuroligin defects have been suggested as a patho-
physiological basis for defective gastrointestinal neurotransmis-
sion in autism (113). Though NO signaling may not be spa-
tially localized because of the very high diffusion coefficient
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Chaudhury Shank and nitrergic neurotransmission

FIGURE 5 | Shank3 is present in soma of myenteric nitrergic neuron.
Note that shank3 has speckled appearance in cell periphery (A). (B–D) shows
staining for nNOS, vAChT and colocalization of the three proteins. In (E),
higher magnification view shows the speckled appearance of shank, which is
still seen as diffuse distribution across the cell body, but it is not clear

whether the distribution is only restricted to the surface. The higher power
image shows diffuse distribution of nNOS in the both the cell cytosol and
membranous region, colocalized with the submembranous location of
shank3. Note that shank3 localization in nitrergic nerve terminals has not
been examined. Modified with permission from Raab et al. (79).

(114, 115), specific role of cell adhesion molecules in nitrergic
neurotransmission has not been examined in details.

Shank2 may also play a role in nitrergic neurotransmis-
sion in enteric neuro-smooth muscle junctions. Shank2–guanine
nucleotide exchange factor ArhGEF interactions has been reported
(116). Deletion of ArhGEF in mice has been shown to develop
esophageal achalasia (117, 118). Both shank2 and shank1 muta-
tions have also been reported recently to present with autism fea-
tures (88, 119–121). The role of shank2/shank1 in enteric nitrergic
neurotransmission may also be significant, though the presence of
shank1 in nitrergic myenteric neurons was not reported in the
study by Raab et al. (79).

SHANK KNOCKOUT MICE MAY PROVIDE INSIGHTS INTO
MECHANISTIC BASIS OF CYCLICAL VOMITING
Though the experiments of dynamically examining molecular
exchanges by real-time live imaging may not be easily accom-
plished without access to high resolution microscopy, protein
association studies by imaging proximity ligation assay (PLA) (12,
122) may be utilized to obtain a snapshot of static interactions in
the cell periphery. Nitric oxide production assays by KCl stimula-
tion of diaminofluorescein (DAF)-loaded enteric varicosities may
be used to examine deficiency of nitric oxide production in shank3
knockout mice. Shank 3exon4–9 homozygotes result in nearly com-
plete loss of shank3a and b isoforms (123). It has been reported
that these shank3 knockout mice manifest behavioral patterns of

autism (123–126). Defective nitrergic neurotransmission due to
shank deficiency may impair gastric emptying. These studies shall
provide critical insights into the molecular pathology of refractory
gastrointestinal motility disorders like cyclical vomiting in patients
with ASD.

Insights into molecular pathogenesis shall set the stage for
long-term investigations into designing rational pharmacologi-
cal targets for addressing these conditions. The gastrointestinal
symptoms may severely affect nutrition in ASD patients with
already compromised social communication skills, so state-of-the-
art management for gastrointestinal problems is much needed.
Gastrointestinal motility problems in these patients are a cause
of suffering for the patients, as well as challenging issues for their
caregivers including parents. Virtually nothing is known about the
mechanisms underlying these disorders. This review argues based
on incipient evidence from CNS neuropathology that because
synaptopathy is a major underlying pathophysiology of ASD (112,
127–129), the motility problems of slowed gastrointestinal transit
possibly result from defective junctional neuromuscular trans-
mission, for example, through defects in nitric oxide-mediated
neuro-smooth muscle transmission.

If defects in shank proteins are detected as a cause for impair-
ment of nitrergic neurotransmission, then methods for pharma-
cological management for treating these disorders, such as replace-
ment of shank proteins that are being reported for management
of autism (130–132), may provide benefits for gastrointestinal
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Chaudhury Shank and nitrergic neurotransmission

symptoms as well. Shank proteins are known to respond to the
enteric-specific neurotrophic factor GDNF via Ret tyrosine kinase
signaling (133). These neurotrophic factors may also impact on
management of gastrointestinal motility problems that may result
from defective shank signaling. This review also supports the
rationale of examining shank proteins in impairment of nitr-
ergic neurotransmission in other functional bowel disorders like
irritable bowel syndrome and idiopathic gastroparesis.
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